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The es cion of mixing proportions pl,pz,...,p in -the mixture . ﬁ
L 1

density £(x) = (x) is often encountered in agricultural remote

P
sensing problemsiii w;ich case the;pi'o usually represent crop proportions.
In these remote sensing applications, component densities&gésil have
typically been assumed to be normally distributed, and parameter estima-
tion has been accomplished using maximum likelihood (ML) techniques. In
this papet-éé;;£o;ine minimum distance (MD) estimation as an alterna-
tive to ML where, in this investigation, both procedures are based upon
normal components. Results indicate that ML techniques are superior
to MD when component distributions actually are normal, while MD esti-

mation provides better estimates than ML under symmetric departures from

normality. When component distributions are not symmetric, however, it
is seen that neither of these normal based techniques provides satis-

factory results,
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A COMPARISON OF MINIMUM DISTANCE AND
MAXIMUM LIKELIHOOD TECENIQUES
FOR PROPORTION ESTIMATION

Wayne A. Woodward, William R. Schucany,
Hildegard Lindsey, and H. L. Gray
Center for Applied Mathematical and Statistical Research
Southern Methodist University

1. Introduction

A common objective in remote sensing is the estimation

of the proportions pl,pz,...,pn‘in the mixture density
f(x) = plfl(x) + pzfz(x) + ...+ pmfm(x) (1.1)

where m is the number of components(crops) in the mixture
and for component i,fi(x) is a (possibly multivariate)
density. In past practice this density has been assumed to
be (multivariate) normal with X being the reflected energy
in four bands of the 1light spectrum, certain linear
combinations of these readings, or other derived "feature"
variables. Generally the parameter estimation has been
accomplished using maximum likelihood techniques., In this
paper we examine the use of minimum distance estimation as
an alternative to maximum 1likelihcod and we will compare
the performance of the two estimation technigques when
dealing with mixtures of normal and of non-normal densities
with varying amounts of separation., We will €focus on the

mixture of two univariate distributions given by

£(x) = pfl(x) + (l-p)fz(x) (1.2)
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We are also assuming that only data from the mixture
distribution are available. Other sampling schemes in which
training samples from the component distributions are also
available have been discussed by Hosmer (1973),

Rednér(1980), and Hall(198l) among others.
2. Estimation in the Mixture of Normals Model

In this section we will assume that fl(x) and fz(x) in
(1.2) are normal densities with mean and variance My ci and
“2'°§ respectively where it is assumed that all five
parameters ul,ci,ué,cg, and p are unknown. Techniques €for

estimating these parameters will be discussed.

(a) Maximum Likelihood

Several recent articles have dealt with the problem of
obtaining the maximum 1likelihood estimates of Myr c%, My v
cg, and p (Hasselblad(1966), Day(1969), Wolfe(1970),
Hosmer (1975), Fowlkes(1979), Lennington and Rassbach(1979),

and Redner(19806).) Since the likelihood function

L= f(xl)f(xz) ces f(xn) (2.1)

where n is the sample size, is not a bounded function in
this case (see Day(l1969)), the objective in the maximum
likelihood approach is to £find a local maximum of L. This
maximum is usually found by setting the partial derivatives
of log(L) with respect to each of the 5 parameters equal to

zero and solving the resulting set of equations, called the
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likelihood equations. Since closed form solutions of these
equations do not exist, they must be solved using iterative
techniques. Hasselblad(1966) and Wolfe(1l969) suggested that
these equations be solved by taking advantage of their
fixed point form. Redner(1980) and Redner and Walker(1982)
have pointed out that this fixed point technique is
essentially an application of the EM algorithm (see

Dempster, Laird and Rubin(1977)) with the only difference
2

being that using the EM algorithm, the estimates of o1 and
og at step k involve the updated th step estimates of Y,

and u,

Fowlkes(1979), on the other hand, maximized the
likelihood function directly by utilizing a gquasi-Newton
method for minimizing -log(L) and found that good starting
values were crucial for acceptable performance.
Hosmer (1975) stated that using the likelihood equations,
starting values were not a serious problem in |his
experience. In order to determine which of the two
techniques seemed preferable in our simulation studies we
replicated simulations performed by Fowlkes in which
various sets of poor starting values were used to initiate
the minimization procedure. We simulated realizations from
the mixture utilized by Fowlkes and estimated the
parameters using both direct maximization and the EM
algorithm. The results of our simulations indicate that
the EM algorithm approach is preferable and hence we have

used this technique for obtaining MLEs in our simulations.
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(b)Minimum Distance

Although ML estimation procedures are known to have
certain optimality properties, their sensitivity to ‘ :
violations of the underlying assumptions is also
recognized. The development of estimation procedures which
perform well even under moderate deviations from
assumptions h$s been a topic of major interest in recent
literature. One of tﬁese robust procedures which has
received recent attention is that of minimum distance(MD)
estimation introduced by Wolfowitz(1957). Parr and
Schucany (1980), for example, have shown that MD techniques
provide robust estimators of the location parameter of a
symmetric distribution. Minimum distance estimation has
been used for parameter estimation in the mixture model by
Choi and Bulgren(1968) and MacDonald(l1971) with some
success although, to our knowledge, the gquestion of
sensitivity to assumptions in this setting has not been
addressed. These previous authors assumed that the

parameters of the component distributions were known and

that only the mixing proportion(s) was to be estimated.
In order to briefly describe minimum distance ]
3 estimation, we let x . ,X.,...,x _denote a random sample from ;
r® _ 1772 n }
a population with distribution function F and 1let Fn e
denote the empirical distribution function, i.e. Fn(x)-k/n
where k is8 the number of observations 1less than or equal j

- to x. Further, letM¥s= {HszeeQ} denote a family of 1

distributions depending on the possibly vector valued
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parameter 6. The MD estimate of 8 is that value of 9 for
which the distance between Fn and Hy is minimized. It is
net necessary that FeH  of course, when a mixture of two

normals is used as the projection family, Hg4 becomes

x 1 YHy 2 1 Y7Hp 2
1 -7(--——c X 1 -7( = )
He(x) =p [ —=— e 1 dy + (1-p) [ — e 2 dy.
e V2T o, o &L Oy

Certain considerations become obvious at this point.
First, we must define what we mean by the "distance"
between two distributions. Several such distance measures
have appeared in the literature. The reader is referred to
the article by Parr and Schucany(1980) for a discussion of
these measures. For our purposes we have chosen the

2

Cramér-von Mises distance, w° , between distribution

functions G]_and G2 which is given by

w2 = [16,(x) -6, (x) 124G, (x) .

In our setting a computing formula for the Cramer-von

Mises distance between %\ and He is given by

2 _ 1 n i-.5.2
Wn = 135 +iil[He (Yi) T] '
where Yi is the ith order statistic. The similarity

between wi and the sum of squared differences between® the
empirical distribution function Fn and He used by Choi and
Bulgren(1968) should be noted.

Another consideration involves the minimization

2

procedure to be employed in minimizing er Parr and
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Schucany used the IMSL gquasi-Newton algorithm ZXMIN. Our
comparisons have shown ,however, that the 1IMSL routine
ZXSSQ which uses Marquardt's(1963) method for minimizing a
sum of squares was significantly faster, usually taking no
more than half the time required by .ZXMIN. In the
simulation studies reported in the next section we have
used the Marquardt minimization procedure when calculating
the MDE. It should be noted that minimization is subject
to the constraints oizp, cgzo r and 0<p<l. Another finding

which deserves mention before proceeding is that similar

‘to the technique we have chosen for calculating the MLE,

the MDE has the desirable property that it is relatively

insensitive to starting values.

3. Starting Values

In order for the estimators discussed in the previous
chapter to be used in practice, starting values for the
iterative procedures must be provided. We have chosen to
obtain starting values in this two component univariate
setting using a partitioning technique which is very easy
to implement. In the discussion to follow we will assume,
without loss of generality, that ;xl< P This technique
involves £first obtaining the initial estimate of P
denoted by Py and then estimating the remaining four
parameters given By Under the current implementation,

only the 9 values .1,.2,...,.9 are allowed as possible
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values for B For each allowable value of Py the sample

is divided into two subsamples :

Yl ' Y2 P) ...,Ynl
Yy , Y , ""Yn
nI+l nl+2

where ¥ is the ith order statistic and n; is np, rounded
to the nearest integer. The value for Py is that value of
p for which p (1-p )(ml-mzf is maximized, where mj is
the sample median of the jth subsample. The criterion used
here is a robust counterpart to the classical cluster
analysis procedure of selecting the clusters for which the
within cluster sum-of-squares is minimized. It is easy to
show, however, that the within cluster sum-of-squares is
minimized in the two cluster'case when p(l-p)(ii‘?z)z is
maximized, where fj is the semple mean of cluster j and
and p=nl/n with nl the number of sample values placed in
cluster 1. Such a clustering is based upon a cut=-point,
¢ , for which all sample values below ¢ are assigned to
the cluster associated with population 1. It must be
observed, however, that due to the overlap between the two
mixéure distributions, some sample points assigned to
cluster 1 may be from population 2 and some observations
from population 1 may be in cluster 2. The effect of this
truncation of the right tail in population 1 is that the
sample mean from cluster 1 is likely to underestimate By

while Hy is likely to be o\ sti- ced. In addition 02

1
og are likely to be underestimated by si and sg. If we

and
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assume that the overlap between the two populations is not )
too severe, then the sample values in cluster 1 to the .
left of m, are relatively pure observations from

population 1 in which case m; is a "good" estimate of the -

population mean in the case of symmetric distributions.

This reasoning also indicates that ml and m2 should

provide better estimates of My and Ho than would'?cl and

PN ST

Eé. In order to estimate the variances of the cohponent

distributions we again will depend upon the fact that the

N
LK R

values to the left of m, and to the right of m, are "pure"
samples from populations 1 and 2 respectively. Thus, we
will use only this portion of the data for estimation of

the sample variances. We have used the fact that the

semi-interquartile range of a standard normal distribution

is .6745, to estimate o by

200y =
01(0) —(-—.-6-7—45—-—) '

3
b
.
g
e

where %q) is the q percentile from the jth cluster,

j=1,2. Similarly, ol = [(r,"™m) 674517,

; In the next section we will discuss the results of a

E; major simulation investigation comparing ML and MD

- estimation. In these simulations the iterative techniques 7
were initiated by the starting values as discussed in the ]
previous paragraph. A preliminary simulation investigated i

E. the performance of the starting values described here. 1In 4
this preliminary study we compared the convergence

o :
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initiated from these starting wvalues with that when the
iterative procedures are started at the true parameter
values. The convergence from these two starts was almost
always to the same parameter estimates, a result which
held for both the MLE and MDE., For this reason and results
to be shown in Section 4, we believe this starting value

procedure to be adequate.
4, Simulation Results

In the previous two sections we have discussed ML and
MD estimators for the parameters of the mixture of two
distributions. In this section we report the results of
simulations designed to compare these two estimators when
the component distributions are normal and when they are
non-normal. In addition we have made our comparisons under
varying degrees of separation between the two
distributions. All computations were performed on the CDC
6600 at Southern Methodist University.

In our comparison of the MDE and MLE we have begun by
comparing their performance when the normality assumption
is valid, i.e., when the component distributions actually
are normal. Weé should mention that because of the
optimality properties of the MLE we would expect that the
MLE would be superior in this situation. Since in practice
the validity of the normality assumption is subject to
question, we are also very interested in the performance

of the MDE and MLE when the component distributions are
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not normal. To this end we have simulated mixtures in
which the component distributions are distributed as a
Student's t with 4 degrees of freedom. We simulated 500
samples of size n=100 from mixtures of normal and of t(4)
components for each of the following parameter

configurations:

Mixing proportion
.25
.50
.75

Variances
2 2
9, T 9
2

2
g1 20,

The nature of the mixture model also depends on the
amount of separation between the two component
distributions. While, for sufficient separation, the
mixture model has a characteristic bimodal shape,
Behboodian(1970) has shown, for example, that a sufficient
condition for the mixture density (of two normal
components) to be unimodal 1is that hﬁfuzfgmhﬂolﬁb). of
course, in this situation, parameter estimation is
difficult.

For purposes of quantifying this separation between
the components, we will define a measure of "overlap”

between two distributions. Without loss of generality we
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assume that population 1 is centered to the 1left of
population 2. We define "overlap" to be the probability of

misclassification using the rule:

Classify an observation x as:
population 1 if x < X

population 2 if x > X

where X, is the unique point between Hy and Hy such that

pfl(xc) = (l-p)fz(xc).

We have based our current study on "overlaps" of .03 and
.10, In Figure 1 we display the mixture densities associated
with normal components and o§==c§ For each mixture, the
scaled components pfl(x) and (l-p)fz(x) are also shown. Note
that the densities for p=.75 are not displayed here since
when ci=c§, it follows that fp(x)=fl°P(ul+u2-X)where fh(x)
denotes the mixture density associated with a mixing
proportion of h. Thus the shapes of the densities at p=.75
can be inferred from those at p=.25. Likewise, parameter
estimation for p=.75 is not included in the results of the
simulations when c§=c§

Although both estmation procedures provide estimates of
all 5 of the parameters, only the results for the estimation
of p will be shown since the mixing proportion 1is the

parameter of primary interest. 1In addition, when dealing

with the non-normal mixtures, the remaining parameter
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estimates often do not have a meaningful interpretation. In
these simulations we have used the procedure discussed in
the previous section to obtain starting values. It should be
noted that although we refer to mixtures of t(4)
distributions here, they are actually mixtures of
distributions associated with the random variable T'=aT+b,
where T has a t(4) distribution. These modifications are
made in corder to obtain the desired separation and variance
ratios.

In Table 1 we show the results of the simulation
comparing the performance of the MLE and MDE. In particular,
let 51 denote the estimate of p for the ith sample. Then
based upon the simulations, estimates of the bias and MSE

are given by:

.A 1 ns A
bias = =— I  (p,=-p)
Rg i=1 1
MSE = — I (p-"p) ’
Og i=1 1

where n is the number of samples. It should be noted that
nMSE is the quantity actually given in the table. 1In

addition, we provide the ratio

g = MSE(MLE)
= MSE (MDE)

as an efficiency measure.
Upon viewing the results, it can be seen, as expected,
that the bias and MSE associated with the MLE were generally

smaller than those for the MDE when the components were
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Simulacion Results Comparing MLE and MDE

TABLE 1

Sample Size = 100
Number of replications = 500

NORMAL
Overlap = .10 Overlap = .03

2 2 Bias nMSE* E Bias nMSE E
g, =09, MLE MDE MLE MDE MLE MDE [MLE MDE
p=.25 .052 .125 4,26 7.80 .55 .008 .026 .54 1.09 .50
p=~ .50 .000 .010 3.21 3,8 .83 .000 ,001 |[.38 b2 .90
2 2
g, = 202
p= .25 .002 .084 2.25 5.30 .42 006  ,027 ].49 .96 .51
p= .50 -.009 .005 2,41 2,79 .86 009 ,008 |}.42 44,95
p».75 -,086 -.137 4,87 8,36 .58 -.002 -.024 .47 1,08 44

t(4)
Overlap = .10 Overlap = .03
ol = c2 Bias nMSE E Bias aMSE E
2 MLE MDE MLE MDE MLE MDE MLE MDE

p=.25 .096 .104 7.35 6.18 1.19 .029 ,020 |{.88 44 2,00
p=.5 .015 .004 5.59 1,82 3,07 -.005 ,000 |.47 .27 1,74
oi = 20

p= .25 ,061 .098 4,63 5.20 .89 044,029 .95 .61 1,56
p=.50 .028 .022 4,49 1,80 2.49 .010 ,001 }.55 .30 1.83
p=.75 -.,076 -.058 7.84 3,68 2,13 -.012 -.016 .57 .36 1,58

*nMSE = n times the MSE where n = sample size
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normelly distributed. This relationship Dbetween the
estimators held for both overlaps. The MLE and MDE were
quite similar at p=.5 while for p=.25 and p=.75 the
superiority of the MLE is more pronounced.

For the t(4) mixtures the relationship between MDE and
MLE is reversed in that the MDE generally has the smaller
bias and MSE. The superiority of the MDE in this case is due
in part to the heavy tails in the t(4) mixture. The MLE
often interpreted an extreme observation as being the only
sample value from one of the populations with all remaining
observations belonging to the other. Due to the well known
singularities associated with a zero variance estimate for a
component distribution, Day(1969), we were concerned that
the observed behavior of the MLE was due to the fact that we
did not constrain the variances away from zero.
However,simulation results in which equal variances were
assumed (which removes the singularity) and also those which
used a penalized MLE suggested by Redner(1980) were very
similar to those quoted here.

Although the MSE is a widely used measure among
statisticians for assessing the performance of an estimator,
the practical implications, for example, of an estimator
having an MSE three times 1larger than that for another
estimator, may not be immediately apparent. Recall that each
MSE quoted in Table 1 is based upon 500 estimates of p. In
order to provide a better appreciation for the practical
impact of differences in MSE, in Figure 2 we display

histograms of the 500 estimates of p associated with three
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17 .
different MSEs in the table. The true value of p in each -
case is p=.5. It is obvious that as the MSE increases, the '
performance of the estimator deteriorates. Notice that the ,
MSE for Figure 2(c) is approximately three times greater f
than the MSE associated with Figure 2(a), while the MSE for 3
Figure 2(b) is aprroximately twice that for Figure 2(a).

Thus, from these histograms, an intuitive feel for

;l efficiency ratios of E=2 and E=3 can be obtained. ;3
b A very surprising result is that the starting values :
obtained using the procedure outlined in Section 3 produced
estimators which were competitive with both the MLE and MDE.

In fact, for both the normal and t(4) mixtures, the MSEs

(2 '
2l M oa 23 4 2

associated with the starting values were lower than those

for the MDE and MLE for every parameter configuration

W
PP N PR

associated with an overlap of .10. At an overlap of .03,
however, the starting values estimates were generally poorer :
than those for the MDE and MLE. i
L ¥
5. Mixtures of Asymmetric Distributions jﬁ
1
The simulation results of the previous section focus on Fﬁ
the performance of the MLE and MDE under deviations from the -}
assumption of normality. However, the t(4) distribution is ';
symmetric, and recent studies have indicated that there is L;
often a substantial asymmetry in the component distributions ‘j
for variables of interest in agricultural remote sensing. A ;
Monte Carlo examination of the performance of the MDE and 4

MLE, assuming normal components, when in fact the component
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distributions were asymmetric, was performed, and the

results of this examination will be discussed 1in this
section.

For purposes of our examination, we simulated mixtures
of x2(9) distributions with p=.5. In these simulations the
two distributions differed from each other only by a

location shift. Actually the component distribution to the
left is x2(9) while that to the right is that of a "shifted"
x2(9) with origin no longer at 0. This shift was varied to
provide overlaps of .01, .05, and .10. Since our estimation
procedures involve a normality assumption, we used the means
and variances of the two component x2(9) distributions and
our The

the true mixing proportions as starting values.

problem of obtaining starting values from the data in this
case is being examined. In Table 2 we display the results of
this simulation. Only when the two component distributions
were widely separated (overlap=.0l1) do the two procedures
provide reasonable results. However, when the two chi-square
distributions are not widely separated, both estimators tend
to seriously underestimate p. In Fiqure 3 we display the
three mixture distributions on which these simulations were
based. We see there that it is no surprisz that the estimate
of p is less than .5, especially for p=.10., Both estimation
procedures view this as a mixture of normals, and therefore
make the reasonable interpretation that the density to the
left has a smaller variance and a mixing proportion 1less

than .5. These results point out the impact which skewed

distributions can have on the proportion estimation in the
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TABLE 2

Simulation Results
Mixtures of x2(9) Components
Sample Size = 100

Number of replicatioms = 200
P=.5

P Bias nMSE P Bias nMSE
.10 .28 -.22 6.8 .28 -.22 6.6

b4
>
AU

Overlap .05 .35 -.15 2,7 .37 -.13 2.3
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mixture model when normal mixtures are assumed.

Current investigation into this area centers around
modifying the estimation procedures by assuming that the
underlying component distributions belong to some family of
distributions whose members can be either symmetric or
asymmetric depending on parameter configurations. At the
present time, the Weibull distribution is being examined

concerning its usefulness.,
6. Concluding Results

We believe that the results of the preceding sections
are of sufficient substance to motivate further research in
the area of MD estimation in the mixture model. Qur results
indicate that the MDE is indeed more robust than the MLE in
the sense that it is less sensitive to symmetric departures
from the underlying assumption of normality of component
distributions. Several areas for future investigation have
already been identified in addition to the asymmetric
components problem discussed in Section 5.

Pirst, simulations similar to the ones presented here
should be performed without the assumption of okly two
populations in the mixtdre. The performance of the MDE and
MLE should be compared when the number of populations is
known and larger than two. In addition the applicability of
the MDE to the problem of estimating the number of
populations also warrants investigation. We plan to examine

these possibilities.

2 JER R,

- la e

fay v B




PE s S an

Ol I i e 48 A% ZEE b SN A Sne Bov iam opodh b Sl ik JER 4 o B g A
. iy . 2 . [Pl d . HaE

F
i.!

Py TR ARSI ey
+ °

Second, the problem of applying the MDE to the multivariate
setting is of interest. Preliminary indications are that
such an extension will be possible.

Third, the choice of distance measure in the MDE is a
topic of interest. Our results are not meant to imply that
W is optimal.

Finally, the MDE and MLE must ultimately be compared on
real data. Several related practical considerations have not
yet been investigated. For example, when applying these
estimators to LANDSAT data, the number of iterations allowed
must be small due to time constraints, In the simulations
described here, these constraints were not imposed and
iteration was allowed to continue until convergence was
obtained. The performance of the MDE and MLE under

convergence restrictions should be examined.
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